
1

David Lerman
Senior Systems Analyst

Warfighter Training Research Division
Air Force Research Laboratory

Image Conference
Scottsdale, Arizona

14-18 Jul 03

The research reported in this presentation was sponsored by AFRL under contract #
F41624-97-D-5000.

2

Compensating Vectors for Differences in
Earth Representation Between Host and

Image Generator

The Warfighter Training Research Division (WTRD) of AFRL is at the former
Williams AFB in Mesa, Az, now Williams Gateway Airport. The vision of the
WTRD is to provide the world’s best training tools, ensuring that warfighters have
the skills to win.

The contactor team consists of Lockheed Martin, Boeing and the Link Simulation &
Training Division of L3 Communications. L3 pays my salary. However, most
people believe that they work for the Lab regardless of the paycheck source.

I work primarily for a WTRD advanced simulation group tasked to develop
commercial technologies and innovative software engineering approaches designed
to significantly reduce costs and enhance fidelity. This group has produced
innovations in COTS processors, re-host of embedded aircraft software, replacement
of custom input/output systems with low cost COTS, and addressed network delays,
time stamping, and coordinate transformations.

This talk describes problems making a Maverick electro optical or IR simulation hit
the target regardless of the Image Generator (IG) earth representation. The
problems were fixed by making vector calculations in the host account for
differences in earth representation between the host calculations and the IG.

3

3

Real World Pre-Launch

Seeker tr acks target imagery

4

4

Real World Post-Launch

Continues tracking imagery
until miss or impact

The above slides show the Maverick seeker tracking the target
imagery both pre launch and during flyout.

5

5

Simulation Pre-Launch

Seeker tr acks target imagery

IG uses l aser rangefi nder feature to
return range and either terrain code
or Target ID#

6

6

Simulation Post-Launch

Flies to locati on determined at launch

or

Chooses
target id #
at launch
and flies to
its location

On the simulator we use an IG sensor channel dedicated to the Maverick while it is
still on the aircraft. In principle we could keep the sensor channel dedicated to the
Maverick after launch, in which case the Maverick would continue to track the
imagery in a realistic way until striking or missing the desired target.

Unfortunately, after launch the sensor channel is needed elsewhere. This prevents
the Maverick from tracking the target image to impact, so we must be creative
(cheat) to complete the flyout.

The above slides show the Maverick seeker tracking the target imagery and using
the IG laser rangefinder feature to receive range and either terrain code or target
ID# pre-launch. After launch the Maverick maneuvers towards a model or
geographic location determined at launch.

The decision whether to follow the position of a model of known ID, or to fly to a
fixed location is based upon the algorithm in the next slide.

7

7

Simulated Maverick Flight Guidance
Decision at Launch

if (IG returns a model ID#)
{

this is ID# of model to f ollow after launch
}
else
{ /* IG returns range and terrain code */

use find_tgt_near_mav_gates to f ind ID of model with LOS closest to seeker
if (closest LOS is inside tracking gates)
{

this is ID# of model to f ollow after launch
}
else
{

use get_tgt_posn to f ind location of end of seeker LOS at launch
this is location to try to fly to af ter launch

}
}

If the IG returned a model ID #, the missile tries to follow that model position after
launch.

Otherwise the host determines the ID # of that target with LOS closest to that of the
seeker. If the target LOS is inside the seeker tracking gates the missile tries to fly to
the known location of the model, even as it changes.

Otherwise the location of the end of the seeker LOS is calculated from the range and
alignment, and the missile tries to fly there.

8

8

Initial Maverick Vector Work

Use seeker LOS to find ID # of closest model LOS
or find location of end of LOS vector

• Worked in ge ode tic coordinates
• Used fee t/degree N or S at

seeker to conv ert v ectors to
geode tic increments or v ice
v ersa

• Good enough out-the -window
• Miss with Mav erick

Total
horizontal
vec tor

Seeker
(lat,lon)

Locati on
(lat + ∆lat,
lon + ∆lon)

∆lat=∆N*
(deg / ft_n)

∆lon=∆E* (deg / ft_e)

The slide shows that initially we used simple feet per degree North and East
relationships to convert the sensor LOS vector into latitude and longitude
increments or vice versa. In the past these algorithms have been satisfactory for out-
the window work. However, when combined with relatively long range and the
effectively high magnification of the narrow FOV seeker, these algorithms gave
errors that could cause the missile to miss the target.

9

9

Success with F-16 Simulator Integrated
with E&S IG Flat Earth

• Do host calculations in
same map as IG

• Project seeker location
into map

• Project seeker_to_target
v ector into ma p, hence
target location

• Inv ert map projection to
find targe t geodetic
coordinates

Lambert confor med conic pr ojecti on of WGS- 84

Missile flight

Initial vector
to target

The fix for our immediate problem with an F-16 simulator integrated with an E&S
IG was to do the host vector calculations in the same map projection as the IG, a
Lambert Conformal Conic projection of the WGS-84 spheroid.

We project the sensor geodetic location into the map. With the seeker-to-target
vector we can calculate the target location in the map, and convert back into
geodetic coordinates. We cannot go wrong!

10

10

Success Continued with Flight Guidance
Decision copied onto

A-10 Host Integrated with E&S Flat Earth IG

Host and IG use WGS-84
Lambert Conformal Conic

Success with many databases
representing different locations

After development on an F-16, the Maverick software was implemented
successfully on an A-10 FMT integrated with an E&S IG using a WGS-84 Lambert
Conic Projection.

We had success with different databases representing different locations.

Then we integrated with an SE200 IG
and

immediately had problems hitting the target:

11

11

Flight Guidance Decision
FAILURE TO FIND TARGET when A-10

Integrated with Spherical Earth IG

Host calcul ati ons
in Lambert C onic

of WGS-84

IG display based on
Spherical Earth M odel
(R = 20,890,377.0 ft)

After pacing the floor for a bit, we realized the problems resulted from the IG
spherical earth differing from the host flat earth in two important ways.

12

12

Discrepancies between IG Sphere
and Host Flat Earth

Feet per deg l at or l ong
not al ways same as
WGS- 84 or map ther eof

44- ft dr op (1 mil)
at 6.9 nm
(drop α range2)

6.9 nm

Flat Earth
Curv ed Earth

The first cause of the problem was that the curved earth MSL drops away from the
observer’s local horizontal. The drop is about 44 feet at a horizontal range of about
6.9 nm, and is proportional to the square of the horizontal range.

The second cause was that the feet per degree of latitude and longitude can differ
significantly from the values on a WGS-84 spheroid or a projection thereof.

To confirm our suspicions, we needed to derive some equations and calculate some
values.

13

13

Dimensions and Equations for Scale of
Spherical Earth Surface Relative to WGS-84

()
2

5.122

1
sin1
e

e
a
R

nscalesphere −
×−

×=
φ

φ22 sin1 ×−×= e
a
Rescalesphere

R spherical earth radius 20,890,377.0 f eet
e2 WGS-84 eccentricity 2 0.00669437999
a WGS-84 equatorial radius 20925646.33 f eet
φ Latitude

The equations and dimensions in the above slide were used to produce the following
table.

14

14

Tabulation of Northerly and Easterly Scales of
Spherical Earth to Surface Relative to WGS-84

φ

Latitud e φ nscalesphere escalesphere nscale/escale

00 1.005043 0.998315 1.0067

150 1.004367 0.998091 1.0063

300 1.002521 0.997479 1.0051

450 1.000001 0.996643 1.0034

600 0.997483 0.995806 1.0017

750 0.995640 0.995192 1.0005

900 0.994968 0.994968 1.0

Maxi mum bearing err or is 3.35 mil, at Equator.

Sphere (R = 20, 890,370.0 ft) Scales Versus La titude

The table above shows that the Northerly and Easterly map scales on the sphere
differ significantly not only from 1.0, but also from each other.

Compared with a WGS-84 reference spheroid it is clear that there will be a
significant difference in the vectors connecting two points of specified geodetic
coordinates. The differences in the northerly and easterly components would cause
corresponding differences in range and bearing.

At a given latitude, the bearing errors are worst near the inter-cardinal points The
larger the difference between the northerly and easterly scales, the greater the error
in bearing. The worst bearing errors would occur at the equator where northerly
components are too long by 5.0 parts in 1000 and easterly components too short by
1.7 parts in 1000, causing bearing errors of up to 3.35 mil.

Bearings will be correct near the Poles but ranges will be short by 5 parts in 1000.

15

15

Vector Discrepancies Between WGS-84
Flat Earth Host and Spherical IG

Vector to location in IG is not same as vector to corresponding
location in host, if host and IG earth representation differ

To use vector from IG in host calculations, it must be
compensated for how it would appear in host, and vice versa. Use:

comp_host2ig comp_ig2host

Elevation view Plan view
Seeker

LOS i n host

LOS i n IG

True Nor th

LOS vec tor in IG

LOS vec tor in hos tSeeker

Host fl at terr ain

IG spherical terr ain

The slide shows plan and elevation views of the seeker-to-target vector in both a flat
earth IG and a spherical earth IG. The depression to the target is obviously greater
on the spherical earth than on the flat earth. The bearing relative to true North and
the range can also differ due to scale differences.

Therefore vectors from the host must be compensated for comparison with vectors
in the IG earth representation, and vectors from the IG must be compensated for use
in the host earth representation. Use functions comp_host2ig and comp_ig2host.

16

16

We Did Not Use the Exact Solution

There is an exact solution,
cumbersome for many vectors.
Approximation preferred.

We could convert vectors from their appearance in the host to that in the IG, or vice
versa, by going through coordinate transformations or their inverses to find exact
solutions. However, compared to the approximations that we derived, this would be
time consuming for the LOS to every potential target.

Both the compensating functions require some common parameters that are
independent of the vectors being compensated. These common parameters need be
calculated only once per frame.

17

17

First part of approximations,
performed once per frame

IG_earth_curv e
1/a_WGS-84, or
1/R f or sphere, or
0.0 f or f lat earth

Obtain IG N & E map scale (N E f or sphere)

Calculate host map scale at current location (assume N = E)

Hence:
IGomap_nscale_f actor = IG_nscale / host_nscale
IGomap_escale_f actor = IG_escale / host_nscale

≠

≈

The first part of the approximations is performed once per frame in the host. The
output parameters are:

IG earth curvature,
Northerly ratio of the IG map scale to that of the host,
Corresponding Easterly ratio.

Map scale is defined with respect to a WGS-84 spheroid.

The host vector calculations are performed in flat earth map coordinates, so there is
no host earth curvature.

Flat earth map projections must be conformal so that at any location East projects
perpendicular to true North, and Easterly Scale equals Northerly Scale. Also, the
projection must be chosen so that the scale is slow changing and close to 1.0 in the
gaming area.

18

18

Compensating Host Vector to
Appearance in IG

comp_host2ig(end_alt, mapned[3], v mapned[3])
{

if (v is_earth_curv e = zero)
{

/* because the two map scale f actors mutually equal */
v mapned[0] = mapned[0] * IGomap_nscale_f actor;
v mapned[1] = mapned[1] * IGomap_escale_f actor;

v mapned[2] = mapned[2];
}
continued on next slide

If the IG has zero earth curvature the calculations are simple since there is no earth
curvature drop and the map scales do not vary with bearing.

19

19

Compensating Host Vector to
Appearance in IG (continued)

comp_host2ig(continued from previous slide)
else /* v is_earth_curv e zero */
{

altitude_f actor = 1.0 + end_alt * IG_earth_curv e;
rotate horizontal comps thru merid conv into true N and E;
calculate v is horizontal components by

* (altitude f actor * N or E scale f actor);
rotate v is horizontal comps back to get v mapned[0] & [1];
calculate hor_range_sqd;
earth curv e drop = 0.5 * IG_earth_curv e * hor_range_sqd;
v mapned[2] = mapned[2] + earth_curv e_drop;

}
}

≠

However, with a curved earth IG we must account for the drop due to curvature.
Also, because (for a sphere) the scale is not independent of bearing we must rotate
the host vector components from map axes into true N and E before applying the
scale ratios and then rotating back to get the components in map axes.

Observe that an altitude factor is applied along with the scale ratios. This altitude
factor represents the increase in feet per degree with increasing altitude above a
curved earth, and is based upon the altitude of the end of the vector, not the altitude
of the sensor.

20

20

Compensating IG Vector to
Appearance in Host

comp_ig2host(start_alt, v mapned[3], mapned[3])
{

if (v is_earth_curv e = zero)
{

/* because the two map scale f actors mutually equal */
mapned[0] = v mapned[0] / IGomap_nscale_f actor;
mapned[1] = v mapned[1] / IGomap_escale_f actor;

mapned[2] = v mapned[2];
}
continued on next slide

Once more, if the IG has zero earth curvature the calculations are simple since there
is no earth curvature drop and the map scales do not vary with bearing.

21

21

Compensating IG Vector to
Appearance in Host (continued)

comp_ig2host(continued from previous slide)
else /* IG earth is curv ed */
{

calculate hor_range_sqd & earth_curv e drop;
mapned[2] = v mapned[2] – earth_curv e_drop;
end_alt = start_alt – mapned[2];
altitude_f actor = 1.0 + end_alt * IG_earth_curv e;
rotate horizontal comps thru merid conv into true N and E;
calculate host horizontal components by

/ (altitude f actor * N or E scale f actor);
rotate host horizontal comps back to get mapned[0] & [1];

}
}

Again, with a curved earth IG we must account for the drop due to curvature and
(for a sphere) must rotate the vector components into true N and E before applying
the altitude factor and N and E scale ratios, and then rotate back into map
coordinates.

The compensating functions were implemented and tested on the A-10 integrated
with a spherical earth IG. Tests were run from a known sensor location to a known
target location, with and without compensating the vectors.

22

22

Comp_ig2host
Test Results Integrated with Spherical Earth IG

get_tgt_posn uses comp_ig2host

target range about 4.14 nm at bearing about –33.60

Expected error without compensation:
0.60 mil extra depression, about 2.2 mil az
small range error as N stretch and E short cancel

Actual error without compensation:
0.64 mil extra depression, 2.26 mil az
19.4 ft f urther than known location

Actual error with compensation:
0.035 & 0.044 mil of AZ & EL, (< 1 pixel)
2.4 f eet closer than known location

≈

get_tgt_posn uses comp ig2host. Without compensation the alignment and range
errors matched expectations. Then function comp_ig2host reduced the alignment
errors to less than 1 pixel. The target calculated position being 2.4 feet closer than
the known location is partly due to the near face of the target being closer than the
CG.

23

23

Com p_host2ig
Test Results Integrated with Spherical Earth IG

find_tgt_near_mav-gates uses comp_host2ig

target range about 5½ nm on bearing of about –33½0

Expected misalignment without compensation = 2.3 mil

Actual misalign without comp = 2.1 to 2.3 mil

Actual misalign with comp = 0.15 to 0.23 mil (3 to 4.6 pixels)

find_tgt_near_mav-gates uses comp_host2ig. Without compensation the alignment
error matched the expectation. Then function comp_host2ig reduced the error to
1/10 of the uncompensated error, although still a little larger than in the preceding
test.

It is not known how much the residual errors reflect the approximate nature of the
compensation, and how much they reflect noise and other errors in tracking
accuracy, sensor window definitions, or digitizing of the video in the video capture
board.

24

The tests were run with the host position and attitude frozen, hence the very accurate
seeker alignment. In dynamic tracking conditions the seeker does not track the
target so accurately, and the gates are not in the middle of the seeker imagery.
[WHAT SIZE ERRORS?] For that reason, functions find_tgt_near_mav_gates and
get_tgt_posn should be modified to account for the gate position in the seeker.

The full equations are not yet implemented in our hosts. The host map scale is set to
1.0, as is the scale for an IG flat earth However, the tests were run in an area where
the scale was exactly 1.0. In general we train in areas where the map scale is not
significantly different from 1.0, and provided we use a common map projection
between host and IG it does not matter if the scale changes.

However, we are now fielding IGs that use a UTM projection so that the map scale
will vary between the IG and the Lambert Conic host as we move around the
database. Therefore we should implement the full equations on our system.

With the host and IG using different flat earth conformal projections of a common
earth shape, preferably WGS-84, we can compensate the Maverick for scale
differences. Out-the-window problems due to scale differences are unlikely to be
large enough to notice. However, a lack of visual earth curvature is seen out-the-
window. For instance, at high altitude the horizon is insufficiently depressed below
the HUD horizon bar.

An IG using a spherical earth probably causes alignment problems between the out-
the-window and HUD displays that are ignored or attributed to other causes.
Fortunately we are phasing out spherical earth IGs in our programs.

My personal opinion is that we should use the WGS-84 spheroid in our IGs, and use
corresponding exact equations in the host. Then the horizon is seen at the correct
elevation, the calculations do not need compensation for errors, and we need not
spend time analyzing the effects of doing things wrong.

In the meantime, we know how to compensate our Maverick equations for
differences in earth representation between host and IG.

